Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Adicionar filtros

Tipo de documento
Intervalo de ano
2.
preprints.org; 2023.
Preprint em Inglês | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202301.0137.v1

RESUMO

Vaccines against SARS-CoV-2 have been pivotal in overcoming the Covid-19 pandemic yet understanding the subsequent outcomes and immunological effects remain crucial, especially for at-risk groups e.g. people living with human immunodeficiency virus (HIV) (PLWH). In this study we report the longitudinal IgA and IgG antibody titers, as well as antibody-mediated angiotensin converting enzyme 2 (ACE2) binding blockade, against the SARS-CoV-2 spike (S) proteins after 1 and 2 doses of the ChAdOx1 nCoV-19 vaccine in a population of Black PLWH. Here, we report that PLWH (N = 103) did not produce an anti-S IgA response after infection or vaccination, however, anti-S IgG was detected in response to vaccination and infection, with the highest level detected for infected vaccinated participants. The anti-IgG and ACE2 blockade assays revealed that both vaccination and infection resulted in IgG production, however, only vaccination resulted in a moderate increase in ACE2 binding blockade to the ancestral S protein. Vaccination with a previous infection results in the greatest anti-S IgG and ACE2 blockade for the ancestral S protein. In conclusion, PLWH produce an anti-S IgG response to the ChAdOx1 nCoV-19 vaccine and/or infection, and ChAdOx1 nCoV-19 vaccination with a previous infection produced more neutralizing antibodies than vaccination alone.


Assuntos
Infecções por HIV , COVID-19
4.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.07.18.22277743

RESUMO

In this South African phase 1/2b study, we demonstrated vaccine efficacy (VE) of two doses of AZD1222 for asymptomatic and symptomatic SARS-CoV-2 infection: 90.6% against wild-type and 77.1% against the Delta variant [≥]9 months after vaccination. VE against infection with the Beta variant, which preceded circulation of Delta, was 6.7%. Clinical trial identifierCT.gov NCT04444674


Assuntos
COVID-19
5.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.07.13.22277575

RESUMO

ABSTRACT Background The B.1.1.529 (Omicron BA.1) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global resurgence of coronavirus disease 2019 (Covid-19). The contribution of BA.1 infection to population immunity and its effect on subsequent resurgence of B.1.1.529 sub-lineages warrant investigation. Methods We conducted an epidemiologic survey to determine the sero-prevalence of SARS-CoV-2 IgG from March 1 to April 11, 2022, after the BA.1-dominant wave had subsided in Gauteng (South Africa), and prior to a resurgence of Covid-19 dominated by the BA.4 and BA.5 (BA.4/BA.5) sub-lineages. Population-based sampling included households in an earlier survey from October 22 to December 9, 2021 preceding the BA.1 dominant wave. Dried-blood-spot samples were quantitatively tested for IgG against SARS-CoV-2 spike protein and nucleocapsid protein. Epidemiologic trends in Gauteng for cases, hospitalizations, recorded deaths, and excess deaths were evaluated from the inception of the pandemic to the onset of the BA.1 dominant wave (pre-BA.1), during the BA.1 dominant wave, and for the BA.4/BA.5 dominant wave through June 6, 2022. Results The 7510 participants included 2420 with paired samples from the earlier survey. Despite only 26.7% (1995/7470) of individuals having received a Covid-19 vaccine, the overall sero-prevalence was 90.9% (95% confidence interval [CI], 90.2 to 91.5), including 89.5% in Covid-19 unvaccinated individuals. Sixty-four percent (95%CI, 61.8-65.9) of individuals with paired samples had serological evidence of SARS-CoV-2 infection during the BA.1 dominant wave. Of all cumulative recorded hospitalisations and deaths, 14.1% and 5.9% were contributed by the BA.1 dominant wave, and 5.1% and 1.6% by the BA.4/BA.5 dominant wave. The SARS-CoV-2 infection fatality risk was lower in the BA.1 compared with pre-BA.1 waves for recorded deaths (0.02% vs. 0.33%) and Covid-19 attributable deaths based on excess mortality estimates (0.03% vs. 0.67%). Conclusions Gauteng province experienced high levels of infections in the BA.1 -dominant wave against a backdrop of high (73%) sero-prevalence. Covid-19 hospitalizations and deaths were further decoupled from infections during BA.4/BA.5 dominant wave than that observed during the BA.1 dominant wave. (Funded by the Bill and Melinda Gates Foundation.)


Assuntos
Infecções por Coronavirus , Síndrome Respiratória Aguda Grave , Morte , COVID-19
6.
researchsquare; 2021.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-322470.v1

RESUMO

Coronavirus disease 2019 (COVID-19) is a public health emergency of international concern1. People living with HIV (PLWH) are at increased risk for adverse COVID-19 outcomes compared with HIV-negative individuals2-5, and are a high-risk group for COVID-19 prevention4. The ChAdOx1 nCoV-19 (AZD1222) vaccine has demonstrated safety and efficacy against COVID-19 in clinical trials6-8. To date, there are no reports on the safety and immunogenicity of this, or any COVID-19 vaccine, in PLWH, and reports on the immunogenicity of COVID-19 vaccines in Africa are limited9. Here, we show comparable safety and immunogenicity of two doses of ChAdOx1 nCoV-19 between PLWH and HIV-negative individuals in South Africa. Furthermore, in PLWH previously exposed to SARS-CoV-2, antibody responses increased substantially from baseline following a priming dose, with modest increases after a booster dose. Full-length spike and receptor-binding domain IgG geometric mean concentrations after a single dose of ChAdOx1 nCoV-19 in PLWH previously exposed to SARS-CoV-2 were 6.49–6.84-fold higher than after two doses in those who were SARS-CoV-2 naïve at enrollment. Neutralizing antibody responses were consistent with the antibody-binding responses. This is the first report of a COVID-19 vaccine specific to PLWH, and specific to Africa, and demonstrates favorable safety and immunogenicity of ChAdOx1 nCoV-19 in PLWH.


Assuntos
Infecções por Coronavirus , Infecções por HIV , COVID-19
8.
ssrn; 2021.
Preprint em Inglês | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3777268

RESUMO

Background: The ChAdOx1 nCoV-19 (AZD1222) vaccine has been approved for emergency use by the UK regulatory authority, MHRA, with a regimen of two standard doses given with an interval of between 4 and 12 weeks. The planned rollout in the UK will involve vaccinating people in high risk categories with their first dose immediately, and delivering the second dose 12 weeks later.Here we provide both a further prespecified pooled analysis of trials of ChAdOx1 nCoV-19 and exploratory analyses of the impact on immunogenicity and efficacy of extending the interval between priming and booster doses. In addition, we show the immunogenicity and protection afforded by the first dose, before a booster dose has been offered.Methods: We present data from phase III efficacy trials of ChAdOx1 nCoV-19 in the United Kingdom and Brazil, and phase I/II clinical trials in the UK and South Africa, against symptomatic disease caused by SARS-CoV-2. The data cut-off date for these analyses was 7th December 2020. The accumulated cases of COVID-19 disease at this cut-off date exceeds the number required for a pre-specified final analysis, which is also presented. As previously described, individuals over 18 years of age were randomised 1:1 to receive two standard doses (SD) of ChAdOx1 nCoV-19 (5x1010 viral particles) or a control vaccine/saline placebo. In the UK trial efficacy cohort a subset of participants received a lower dose (LD, 2.2x1010 viral particles) of the ChAdOx1 nCoV-19 for the first dose. All cases with a nucleic acid amplification test (NAAT) were adjudicated for inclusion in the analysis, by a blinded independent endpoint review committee. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov; NCT04324606, NCT04400838, and NCT04444674.Findings: 17,177 baseline seronegative trial participants were eligible for inclusion in the efficacy analysis, 8948 in the UK, 6753 in Brazil and 1476 in South Africa, with 619 documented NAAT +ve infections of which 332 met the primary endpoint of symptomatic infection >14 days post dose 2.The primary analysis of overall vaccine efficacy >14 days after the second dose including LD/SD and SD/SD groups, based on the prespecified criteria was 66.7% (57.4%, 74.0%). There were no hospitalisations in the ChAdOx1 nCoV-19 group after the initial 21 day exclusion period, and 15 in the control group.Vaccine efficacy after a single standard dose of vaccine from day 22 to day 90 post vaccination was 76% (59%, 86%), and modelled analysis indicated that protection did not wane during this initial 3 month period. Similarly, antibody levels were maintained during this period with minimal waning by day 90 day (GMR 0.66, 95% CI 0.59, 0.74).In the SD/SD group, after the second dose, efficacy was higher with a longer prime-boost interval: VE 82.4% 95%CI 62.7%, 91.7% at 12+ weeks, compared with VE 54.9%, 95%CI 32.7%, 69.7% at <6 weeks. These observations are supported by immunogenicity data which showed binding antibody responses more than 2-fold higher after an interval of 12 or more weeks compared with and interval of less than 6 weeks GMR 2.19 (2.12, 2.26) in those who were 18-55 years of age.Interpretation: ChAdOx1 nCoV-19 vaccination programmes aimed at vaccinating a large proportion of the population with a single dose, with a second dose given after a 3 month period is an effective strategy for reducing disease, and may be the optimal for rollout of a pandemic vaccine when supplies are limited in the short term.Trial Registration: Studies are registered at ISRCTN89951424 and ClinicalTrials.gov; NCT04324606, NCT04400838, and NCT04444674.Funding: UKRI, NIHR, CEPI, the Bill & Melinda Gates Foundation, the Lemann Foundation, Rede D’OR, the Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and Astra Zeneca.Conflict of Interest: Oxford University has entered into a partnership with Astra Zeneca for further development of ChAdOx1 nCoV-19. SCG is co-founder of Vaccitech (collaborators in the early development of this vaccine candidate) and named as an inventor on a patent covering use of ChAdOx1-vectored vaccines and a patent application covering this SARS-CoV-2 vaccine. TL is named as aninventor on a patent application covering this SARS-CoV-2 vaccine and was a consultant to Vaccitech for an unrelated project. PMF is a consultant to Vaccitech. AJP is Chair of UK Dept.Health and Social Care’s (DHSC) Joint Committee on Vaccination & Immunisation (JCVI), but does not participate in discussions on COVID-19 vaccines, and is a member of the WHO’sSAGE. AJP and SNF are NIHR Senior Investigator. The views expressed in this article do not necessarily represent the views of DHSC, JCVI, NIHR or WHO. AVSH reports personal feesfrom Vaccitech, outside the submitted work and has a patent on ChAdOx1 licensed to Vaccitech, and may benefit from royalty income to the University of Oxford from sales of this vaccine by AstraZeneca and sublicensees. MS reports grants from NIHR, non-financial support fromAstraZeneca, during the conduct of the study; grants from Janssen, grants fromGlaxoSmithKline, grants from Medimmune, grants from Novavax, grants and non-financialsupport from Pfizer, grants from MCM, outside the submitted work. CG reports personal fees from the Duke Human Vaccine Institute, outside of the submitted work. SNF reports grants from Janssen and Valneva, outside the submitted work. ADD reports grants and personal fees from AstraZeneca, outside of the submitted work. In addition, ADD has a patent manufacturingprocess for ChAdOx vectors with royalties paid to AstraZeneca, and a patent ChAdOx2 vector with royalties paid to AstraZeneca. The other authors declare no competing interests.


Assuntos
COVID-19 , Hepatite D
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA